Sustainable Hydrogen Production from Oil Palm Trunk Biomass in Indonesia: A Techno-Economic Study

Authors

  • Bima Prasetya Pancasakti Department of Chemical Engineering, Faculty of Engineering, Universitas Gadjah Mada, Yogyakarta, Indonesia
  • Budhijanto Department of Chemical Engineering, Faculty of Engineering, Universitas Gadjah Mada, Yogyakarta, Indonesia

DOI:

https://doi.org/10.18196/agraris.v10i1.152

Keywords:

Economic analysis, Hydrogen, Oil palm trunks, Sustainable technology

Abstract

Hydrogen has been recognized as a global sustainable alternative sustainable energy source. The government of Indonesia has been working on a novel idea to launch the hydrogen industry. Accordingly, research and development of ecologically acceptable hydrogen manufacturing methods are essential. Supercritical water gasification (SCWG) is one of the recent techniques to create hydrogen. This research investigated the techno-economics of hydrogen production in Indonesia using SCWG. Oil palm trunks (OPT), a plentiful byproduct of palm oil plants, are the primary raw materials employed in this industry. This study extracted data from several research publications on SCWG-related hydrogen generation and performed computational analysis using several economic parameter equations. According to the analysis, with a potential OPT source of around 34 million tons, the plant could manufacture 304,166.67 tons of OPT per year, generating 365,000 tons of hydrogen annually. The production cost was projected to be USD 1,179,409,295, with a fixed capital investment of USD 1,178,853,030.47. The expected annual income was USD 1,825,000,000. This assessment yielded an ROI of 60% and an NPV of USD 1,888,889,382.70. The IRR value was 26.96%, with a PoT of 2.49 years. The sensitivity analysis revealed that the price of hydrogen significantly affected the values of IRR and PoT. Therefore, the government must determine the exact price of hydrogen to ensure its sustainability.

Author Biographies

Bima Prasetya Pancasakti, Department of Chemical Engineering, Faculty of Engineering, Universitas Gadjah Mada, Yogyakarta, Indonesia

 

 

Budhijanto, Department of Chemical Engineering, Faculty of Engineering, Universitas Gadjah Mada, Yogyakarta, Indonesia

 

 

References

Adschiri, T. (2014). Biomass Conversion in Supercritical Water. In Supercritical Fluid Technology for Energy and Environmental Applications (pp. 89–98). Elsevier. https://doi.org/10.1016/B978-0-444-62696-7.00004-6

Agustira, M. A., Siahaan, D., & Hasibuan, H. A. (2019). Nilai Ekonomi Nira Sawit Sebagai Potensi Pembiayaan Peremajaan Kebun Kelapa Sawit Rakyat. Jurnal Penelitian Kelapa Sawit, 27(2), 115–126. https://doi.org/10.22302/iopri.jur.jpks.v27i2.62

Al-Fatesh, A. S., AL-Garadi, N. Y. A., Osman, A. I., Al-Mubaddel, F. S., Ibrahim, A. A., Khan, W. U., … Alothman, O. Y. (2023). From plastic waste pyrolysis to Fuel: Impact of process parameters and material selection on hydrogen production. Fuel, 344, 128107. https://doi.org/10.1016/j.fuel.2023.128107

Aries, R. S., & Newton, R. D. (1955). Chemical engineering cost estimation. New York: McGraw Hill Book Company.

Azis, M. M., Kristanto, J., & Purnomo, C. W. (2021). A Techno-Economic Evaluation of Municipal Solid Waste (MSW) Conversion to Energy in Indonesia. Sustainability, 13(13), 7232. https://doi.org/10.3390/su13137232

Bessarabov, D., & Millet, P. (2018). PEM Water Electrolysis. In Hydrogen and Fuel Cells Primers. Elsevier. https://doi.org/10.1016/C2018-0-02127-1

Borgogna, A., Centi, G., Iaquaniello, G., Perathoner, S., Papanikolaou, G., & Salladini, A. (2022). Assessment of hydrogen production from municipal solid wastes as competitive route to produce low-carbon H2. Science of The Total Environment, 827, 154393. https://doi.org/10.1016/j.scitotenv.2022.154393

Boukis, N., & Stoll, I. K. (2021). Gasification of Biomass in Supercritical Water, Challenges for the Process Design—Lessons Learned from the Operation Experience of the First Dedicated Pilot Plant. Processes, 9(3), 455. https://doi.org/10.3390/pr9030455

Brandenberger, M., Matzenberger, J., Vogel, F., & Ludwig, C. (2013). Producing synthetic natural gas from microalgae via supercritical water gasification: A techno-economic sensitivity analysis. Biomass and Bioenergy, 51, 26–34. https://doi.org/10.1016/j.biombioe.2012.12.038

Budhijanto, B., & Pancasakti, B. P. (2024). Evaluating the Potential of Hydrogen Production from Agricultural Waste in Indonesia: A Comparative Techno-economic Analysis. International Journal of Energy Economics and Policy, 14(2), 618–623. https://doi.org/10.32479/ijeep.15481

Burk, C. (2018). Techno-economic modeling for new technology. Chemical Engineering Progress, 114(1), 43–52.

Chari, S., Sebastiani, A., Paulillo, A., & Materazzi, M. (2023). The Environmental Performance of Mixed Plastic Waste Gasification with Carbon Capture and Storage to Produce Hydrogen in the U.K. ACS Sustainable Chemistry & Engineering, 11(8), 3248–3259. https://doi.org/10.1021/acssuschemeng.2c05978

Cooper, C. L. (Ed.). (2015). Wiley Encyclopedia of Management. Wiley. https://doi.org/10.1002/9781118785317

Do, T. X., Mujahid, R., Lim, H. S., Kim, J.-K., Lim, Y.-I., & Kim, J. (2020). Techno-economic analysis of bio heavy-oil production from sewage sludge using supercritical and subcritical water. Renewable Energy, 151, 30–42. https://doi.org/10.1016/j.renene.2019.10.138

Erbach, G., & Jensen, L. (2021). EU hydrogen policy: Hydrogen as an energy carrier for a climate-neutral economy. Belgium. Retrieved from https://policycommons.net/artifacts/1426785/eu-hydrogen-policy/2041311/

Feibel, B. J. (2003). Investment Performance Measurement. New Jersey: John Wiley & Sons.

Grecea, D., Pupazan, G., Darie, M., Paraian, M., & Colda, C. (2021). Use of hydrogen as a source of clean energy. E3S Web of Conferences, 239, 00013. https://doi.org/10.1051/e3sconf/202123900013

Gunawan, D. (2022). Unlocking the Potential of Hydrogen in Indonesia. In H. Ardiansyah & P. Ekadewi (Eds.), ndonesia post-pandemic outlook: Strategy towards net-zero emissions by 2060 from therenewables and carbon-neutral energy perspectives. BRIN Publishing. https://doi.org/10.55981/brin.562

Hambali, E., & Rivai, M. (2017). The Potential of Palm Oil Waste Biomass in Indonesia in 2020 and 2030. IOP Conference Series: Earth and Environmental Science, 65, 012050. https://doi.org/10.1088/1755-1315/65/1/012050

Han, W., Fang, J., Liu, Z., & Tang, J. (2016). Techno-economic evaluation of a combined bioprocess for fermentative hydrogen production from food waste. Bioresource Technology, 202, 107–112. https://doi.org/10.1016/j.biortech.2015.11.072

Han, W., Hu, Y. Y., Li, S. Y., Li, F. F., & Tang, J. H. (2016). Biohydrogen production from waste bread in a continuous stirred tank reactor: A techno-economic analysis. Bioresource Technology, 221, 318–323. https://doi.org/10.1016/j.biortech.2016.09.055

Han, W., Liu, Z., Fang, J., Huang, J., Zhao, H., & Li, Y. (2016). Techno-economic analysis of dark fermentative hydrogen production from molasses in a continuous mixed immobilized sludge reactor. Journal of Cleaner Production, 127, 567–572. https://doi.org/10.1016/j.jclepro.2016.04.055

Han, W., Yan, Y., Gu, J., Shi, Y., Tang, J., & Li, Y. (2016). Techno-economic analysis of a novel bioprocess combining solid state fermentation and dark fermentation for H2 production from food waste. International Journal of Hydrogen Energy, 41(48), 22619–22625. https://doi.org/10.1016/j.ijhydene.2016.09.047

Héder, M. (2017). From NASA to EU: the evolution of the TRL scale in Public Sector Innovation. The Innovation Journal: The Public Sector Innovation Journal, 22(2), 1–23.

International Energy Agency. (2021). Global Hydrogen Review 2021. Organisation for Economic Co-operation and Development. https://doi.org/10.1787/39351842-en

Ishaq, H., Dincer, I., & Crawford, C. (2022). A review on hydrogen production and utilization: Challenges and opportunities. International Journal of Hydrogen Energy, 47(62), 26238–26264. https://doi.org/10.1016/j.ijhydene.2021.11.149

Kamler, J., & Andres, J. (2012). Supercritical Water Gasification of Municipal Sludge: A Novel Approach to Waste Treatment and Energy Recovery. In Gasification for Practical Applications. InTech. https://doi.org/10.5772/51048

Kota, K. B., Shenbagaraj, S., Sharma, P. K., Sharma, A. K., Ghodke, P. K., & Chen, W.-H. (2022). Biomass torrefaction: An overview of process and technology assessment based on global readiness level. Fuel, 324, 124663. https://doi.org/10.1016/j.fuel.2022.124663

Lam, K. F., Leung, C. C. J., Lei, H. M., & Lin, C. S. K. (2014). Economic feasibility of a pilot-scale fermentative succinic acid production from bakery wastes. Food and Bioproducts Processing, 92(3), 282–290. https://doi.org/10.1016/j.fbp.2013.09.001

Lelieveld, J., Klingmüller, K., Pozzer, A., Burnett, R. T., Haines, A., & Ramanathan, V. (2019). Effects of fossil fuel and total anthropogenic emission removal on public health and climate. Proceedings of the National Academy of Sciences, 116(15), 7192–7197. https://doi.org/10.1073/pnas.1819989116

Li, Y., Guo, L., Zhang, X., Jin, H., & Lu, Y. (2010). Hydrogen production from coal gasification in supercritical water with a continuous flowing system. International Journal of Hydrogen Energy, 35(7), 3036–3045. https://doi.org/10.1016/j.ijhydene.2009.07.023

Łukajtis, R., Hołowacz, I., Kucharska, K., Glinka, M., Rybarczyk, P., Przyjazny, A., & Kamiński, M. (2018). Hydrogen production from biomass using dark fermentation. Renewable and Sustainable Energy Reviews, 91, 665–694. https://doi.org/10.1016/j.rser.2018.04.043

Magdeldin, M., & Järvinen, M. (2020). Supercritical water gasification of Kraft black liquor: Process design, analysis, pulp mill integration and economic evaluation. Applied Energy, 262, 114558. https://doi.org/10.1016/j.apenergy.2020.114558

Martins, F., Felgueiras, C., Smitkova, M., & Caetano, N. (2019). Analysis of Fossil Fuel Energy Consumption and Environmental Impacts in European Countries. Energies, 12(6), 964. https://doi.org/10.3390/en12060964

Matsumura, Y. (2002). Evaluation of supercritical water gasification and biomethanation for wet biomass utilization in Japan. Energy Conversion and Management, 43(9–12), 1301–1310. https://doi.org/10.1016/S0196-8904(02)00016-X

Megía, P. J., Vizcaíno, A. J., Calles, J. A., & Carrero, A. (2021). Hydrogen Production Technologies: From Fossil Fuels toward Renewable Sources. A Mini Review. Energy & Fuels, 35(20), 16403–16415. https://doi.org/10.1021/acs.energyfuels.1c02501

Ministry of Energy and Mineral Resources. (2022a). Dirjen EBTKE: Hidrogen Hijau Pilar Utama Dekarbonisasi Industri. Retrieved from https://ebtke.esdm.go.id/post/2022/06/17/3183/dirjen.ebtke.hidrogen.hijau.pilar.utama.dekarbonisasi.industri

Ministry of Energy and Mineral Resources. (2022b). Hidrogen Didorong Jadi Kontributor Transisi Energi Indonesia. Retrieved from https://ebtke.esdm.go.id/post/2022/02/23/3094/hidrogen.didorong.jadi.kontributor.transisi.energi.indonesia

Mishra, S., & Upadhyay, R. K. (2021). Review on biomass gasification: Gasifiers, gasifying mediums, and operational parameters. Materials Science for Energy Technologies, 4, 329–340. https://doi.org/10.1016/j.mset.2021.08.009

Mustafa, A., Calay, R. K., & Mustafa, M. Y. (2017). A Techno-economic Study of a Biomass Gasification Plant for the Production of Transport Biofuel for Small Communities. Energy Procedia, 112, 529–536. https://doi.org/10.1016/j.egypro.2017.03.1111

Neto, L. S. A., Souza, L. R. de, Muniz, P. B. V., & Camara, J. C. C. (2022). Use of Hydrogen as Energy Source: A Literature Review. Journal of Bioengineering, Technologies and Health, 5(1), 60–64. https://doi.org/10.34178/jbth.v5i1.196

Nwude, E. C. (2012). Return of Investment: Conceptions and Empirical Evidence from Banking Stocks. Research Journal of Finance and Accounting, 3(8).

Okolie, J. A., Nanda, S., Dalai, A. K., & Kozinski, J. A. (2021). Techno-economic evaluation and sensitivity analysis of a conceptual design for supercritical water gasification of soybean straw to produce hydrogen. Bioresource Technology, 331, 125005. https://doi.org/10.1016/j.biortech.2021.125005

Okolie, J. A., Rana, R., Nanda, S., Dalai, A. K., & Kozinski, J. A. (2019). Supercritical water gasification of biomass: a state-of-the-art review of process parameters, reaction mechanisms and catalysis. Sustainable Energy & Fuels, 3(3), 578–598. https://doi.org/10.1039/C8SE00565F

Özdenkçi, K., De Blasio, C., Sarwar, G., Melin, K., Koskinen, J., & Alopaeus, V. (2019). Techno-economic feasibility of supercritical water gasification of black liquor. Energy, 189, 116284. https://doi.org/10.1016/j.energy.2019.116284

Ozturk, M., & Dincer, I. (2021). An integrated system for clean hydrogen production from municipal solid wastes. International Journal of Hydrogen Energy, 46(9), 6251–6261. https://doi.org/10.1016/j.ijhydene.2020.11.145

Pawelczyk, E., Wysocka, I., & Gębicki, J. (2022). Pyrolysis Combined with the Dry Reforming of Waste Plastics as a Potential Method for Resource Recovery—A Review of Process Parameters and Catalysts. Catalysts, 12(4), 362. https://doi.org/10.3390/catal12040362

Peters, M. S., & Timmerhaus, K. D. (2003). Plant design and economics for chemical engineers (5th Eds.). McGraw-Hill.

Porcu, A., Sollai, S., Marotto, D., Mureddu, M., Ferrara, F., & Pettinau, A. (2019). Techno-Economic Analysis of a Small-Scale Biomass-to-Energy BFB Gasification-Based System. Energies, 12(3), 494. https://doi.org/10.3390/en12030494

Rahmi, M. S., Taufiq, B. N., Indah, R., Syahputri, K., Mangara, M. T., & Wandika, A. S. (2019). Economic Feasibility Analysis of Hydrogen Production from Raw Materials of Oil Palm Empty Fruit Bunches. Journal of Physics: Conference Series, 1230(1), 012052. https://doi.org/10.1088/1742-6596/1230/1/012052

Reniers, G., Talarico, L., & Paltrinieri, N. (2016). Cost-Benefit Analysis of Safety Measures. In N. Paltrinieri & F. Khan (Eds.), Dynamic Risk Analysis in the Chemical and Petroleum Industry (pp. 195–205). Butterworth-Heinemann. https://doi.org/https://doi.org/10.1016/B978-0-12-803765-2.00016-0

Said, F. M., Hamid, N. F., Razali, M. A.-A., & Daud, N. F. S. (2022). Lignocellulosic of Oil Palm Biomass to Chemical Product via Fermentation. In Elaeis guineensis. IntechOpen. https://doi.org/10.5772/intechopen.99312

Shi, T., Moktadir, M. A., Ren, J., & Shen, W. (2023). Comparative economic, environmental and exergy analysis of power generation technologies from the waste sludge treatment. Energy Conversion and Management, 286, 117074. https://doi.org/10.1016/j.enconman.2023.117074

Sinnott, R. K. (2005). Chemical Engineering Design. In Coulson & Richardson’s Chemical Engineering (4th Editio). Oxford: Elsevier Butterworth-Heinemann.

Statistics Indonesia. (2022). Luas Tanaman Perkebunan Menurut Provinsi (Ribu Hektar), 2020-2022. Retrieved from https://www.bps.go.id/id/statistics-table/2/MTMxIzI=/luas-tanaman-perkebunan-menurut-provinsi--ribu-hektar-.html

Sullivan, W. G., Wicks, E. M., & Koelling, C. P. (2019). Engineering Economy (17th Editi). Pearson Higher Education.

Šváb, M., & Purkarová, E. (2021). Pilot-Scale Unit for Supercritical Water Gasification of Organic Matter. Waste and Biomass Valorization, 12, 4113–4121. https://doi.org/10.1007/s12649-020-01266-0

United States Department of Agrculture. (2021). Indonesia: Oilseeds and Products Annual. Retrieved from https://apps.fas.usda.gov/newgainapi/api/Report/DownloadReportByFileName?fileName=Oilseeds and Products Annual_Jakarta_Indonesia_03-15-2021

Wijayasekera, S. C., Hewage, K., Siddiqui, O., Hettiaratchi, P., & Sadiq, R. (2022). Waste-to-hydrogen technologies: A critical review of techno-economic and socio-environmental sustainability. International Journal of Hydrogen Energy, 47(9), 5842–5870. https://doi.org/10.1016/j.ijhydene.2021.11.226

Younas, M., Shafique, S., Hafeez, A., Javed, F., & Rehman, F. (2022). An Overview of Hydrogen Production: Current Status, Potential, and Challenges. Fuel, 316, 123317. https://doi.org/10.1016/j.fuel.2022.123317

Zhang, Y., Brown, T. R., Hu, G., & Brown, R. C. (2013). Comparative techno-economic analysis of biohydrogen production via bio-oil gasification and bio-oil reforming. Biomass and Bioenergy, 51, 99–108. https://doi.org/10.1016/j.biombioe.2013.01.013

Downloads

Published

2024-06-29

How to Cite

Pancasakti, B. P., & Budhijanto. (2024). Sustainable Hydrogen Production from Oil Palm Trunk Biomass in Indonesia: A Techno-Economic Study. AGRARIS: Journal of Agribusiness and Rural Development Research, 10(1), 105–119. https://doi.org/10.18196/agraris.v10i1.152

Issue

Section

Research Article